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Abstract: One of the most distinguished problems within the 
class of combinatorial optimization is the 0/1 Knapsack 
Problem, which can be found within fields such as 
management, logistics, and finance. This paper performs a 
comparative analysis of three algorithms: the Greedy 
Method, Dynamic Programming, and Brute Force for the 
problem. The Greedy Method discovers the least-cost 
solution but often cannot guarantee optimality [1]. Dynamic 
Programming breaks the problem into subproblems and 
surely provides optimal solutions but at the cost of serious 
computation [2]. Brute Force finds the best solution by going 
through every possibility, but the cost is exponential and 
becomes impractical to handle with very large data. 

Keywords: 0/1 Knapsack problem, NP-complete, Brute Force 
Greedy algorithm, Dynamic Programming, , Optimization, 
Storage systems. 

I. INTRODUCTION  

0/1 Knapsack problem basically ideates the concept that, 
given n items and a bag with a weight of the itch item as 
Wi, its price is Vi, and the capacity of the bag as C. The 
bigger the capacity of the backpack, the less total weight of 
all items is less than the capacity of the backpack. If the 
total weight of each item is less than the capacity of the 
backpack, then it is obvious that the total value of each 
item is worth it. However, in this problem, the capacity of 
the backpack is usually lower. As this equipment is quite 
heavy, the best possible results can be gained if what you 
are putting into your backpack is chosen correctly and the 
total weight should not exceed a backpack refer fig 1 for 
understanding. 

The 0-1 Knapsack Problem is also used for transforming 
recommendation systems, where points are chosen from 
huge datasets, for which values are calculated for each 
user. The values change as different users interact with the 
system to extract maximum utility from the product, like 
playlist recommendations, advertisement 
recommendations, or media suggestions [3]. This paper 
compares three algorithms with which it is possible to 
solve the Knapsack Problem: Greedy Method, Dynamic 
Programming, and Brute Force. The algorithms differ 
concerning accuracy and efficiency. Using the above real 
world data storage scenarios, these algorithms are tested to 
evaluate their capability to make the best decisions under 
constraints, especially when the space is limited. Dynamic 
Programming avoids overlapping subproblems by solving 
a problem only once and storing its results; usually, it 

performs this task in a bottom-up manner [4], [5]. It has 
optimal solutions but at a high computational cost. Greedy 
algorithms come in handy as they perform well in cases 
that consist of choosing elements based on their price to 
weight ratio [6]. However, even though this yield results 
fast, it may not present the best solution always [7]. 

 

Fig.1. Knapsack problem 

Generally, Brute Force algorithms find any practical use 
only for small datasets due to their exponential time 
complexity [8]. The brute force algorithms explore all 
possible combinations exhaustively till they obtain the best 
solution, but the increase in size of the dataset makes them 
completely impracticable. We increased the sizes of input 
data incrementally to observe the execution times in 
support of performance. For instance, in comparing the 
scaling of every algorithm's execution time with increases 
in size of data, input sizes from 10 to 1000 have been used 
[9].With increasing popularity in current fields such as data 
mining, machine learning, and security, this type of 
problem, referred to as the 0/1 Knapsack Problem and 
other combinatorial optimization problems, receives more 
recognition [10], [11]. From an applied perspective, data 
mining and machine learning are characterized by the 
involvement of big data and real-time decision-making, 
where there is an emergence of algorithmic efficiency as 
the prime objective. For all these reasons, it is important to 
find algorithms that constantly seek an appropriate balance 
between accuracy and timeliness [12]. Key to which 
algorithm is best suited to applications is understanding the 
time complexity of various algorithms—and how 
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computation time scales with data size. In the light of that, 
this paper was to give a greater detailing of time 
complexity and trade-offs associated with the Greedy, 
Dynamic Programming, and Brute Force algorithms. So, 
understanding their tradeoffs and variability in handling a 
large-scale dataset is quite important [13]. Moreover, 
scalability and storage efficiency, which have been 
considered the two bottlenecks in high-scan big data, are 
given particular importance while developing better 
computational frameworks that can be used when the data 
is required to be processed at its best [14], [15].This review 
is aimed to give a general assessment of the state of current 
research into the 0/1 Knapsack Problem in some measure, 
indicating the evolution of these ideas and the problems 
they solve. It will highlight holes and areas for important 
ground to be broken by later work and how advances can 
be drawn towards both practical applications and 
theoretical development [16], [17]. 

II. LITERATURE SURVEY 

Recent work on the 0/1 Knapsack Problem focuses on 
algorithms that combine computational efficiency with 
quality of solution: It is also an important problem studied 
in the context of data mining, logistics, and financial 
optimization problems. Several key algorithms have been 
proposed, each of which has distinct advantages and trade-
offs about time complexity and solution optimality. The 
Greedy Algorithm is another heuristic strategy, and the 
items are chosen according to the price-to-weight ratio. J. 
P. Kennedy et al say that the algorithm is very computation 
efficient but easy to implement and fails in many cases to 
produce optimal solutions, especially in complex data 
handling settings, such as in recommendation systems or 
decision-making contexts, where Greedy can produce 
suboptimal solutions when the highest value items are not 
following the capacity constraint [18].On the other hand, 
DP provides a strict approach in ensuring optimal 
solutions. It achieves this by breaking up the problem into 
subproblems so that each one needs only to be solved 
once, and results stored to avoid redundancy. This method 
is quite accurate, though expensive. Its usage is more 
suitable for smaller scales or where there must be an 
optimal solution against the performance. Pisinger et al 
have established through their study that Dynamic 
Programming may only be practical for larger data sizes if 
one is furnished with ample computational resources that is 
not always possible [19] Although the Brute Force 
guarantees optimality in its results, since it checks all the 
permutations of items, exhaustive search results in 
exponential time complexity that renders it impractical to 
apply in large-scale applications. As noted by Bellman et 
al, it becomes computationally prohibitive with the 
increase in problem size, more so in such applications as 
security and real-time data processing [20]. This is because 
most decision-making processes require handling huge 
amounts of data; therefore, modern areas like machine 
learning and big data analytics significantly require good 
algorithms. Consequently, there is a tradeoff between 
accuracy and computation efficacy. For instance, the 
approaches designed by Cormen et al have been adapted 
for big data environments as a measure for overcoming the 
scalability issues but still have room for minimization of 

execution time without compromising quality solutions 
[21, 22]. 

III. METHODOLOGY 

A. Problem   defination  

Situation: A shopkeeper wants to know which items in a 
warehouse he should take to the market for maximum 
potential profits. The shopkeeper has a knapsack with 
limited capacity - this is very similar to having sufficient 
capacity, in terms of total weight (size), for carrying all 
items. Each item had an associated value or importance or 
potential profit and corresponding weight, or size, and 
bulk. The objective is to pick the best combination of 
items such that the weight of items does not exceed the 
weight capacity of the bag as shown in fig 2. 

 
 
                Fig 2. Problem Definition figure. 
 
A set of items, each with: 
Weight (size) Wi: The amount of space the item takes in 
the bag. 
Value (profit) V(I): The profit that can be made by selling 
the item. 

B. Decision Variable:  

Let x(i) be a binary variable where: 
x(i)=1 if item i is included in the bag (selected)  
x(i)=0 if item i is not included (not selected). 

C. Objective: Maximise 

         

Subject to: 

  
 
Where:  
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• Z is the value to be maximized. 
• v(i) is the value of item i. 
• W(i) is the weight of item ii. 
• x(i) is a binary variable taken for the decision that        
takes the value 1 if item ii goes to the knapsack and 0 
otherwise. 
•  is the total number of items. 
•  Capacity is the maximum weight which can be carried       
in the knapsack. 

IV. ALGORITHM ANALYSIS 

A. BRUTE FORCE APPROACH 
The brute force approach of optimization surveys all 
possible subsets of items to find a combination that 
maximizes the value underweight constraints. For details, 
see Block Diagram 1. This approach guarantees an optimal 
solution, but with high computational cost; time 
complexity is given as O(2^n), implying exponential 
growth of computation requirements with an increase in 
the number of items. 

As the input size grows it is practically not possible to 
handle the scenario because the number of subsets that 
must be addressed exponentially increases. 

 

         Block Diagram 1: Brute Force Approach 

B. BACKTRACKING APPROACH 
The brute-force approach is a technique where all possible 
subsets of items are examined to identify which particular 
combination maximizes value without exceeding the 
knapsack's weight capacity (see Block Diagram 2 for an 
outline of the procedure). Backtracking systematically 
discovers possible solutions and immediately backs up 

when it finds that the solution at hand cannot be optimal. 
Block Diagram 2 also shows the logical progression of 
subset evaluation." 

 

  

Block Diagram 2: Backtracking Approach 

C. DYNAMIC PROGRAMMING APPROACH 
It breaks up the problem into a set of overlapping 
subproblems but solves them independently. First, it 
checks whether the solution to the current subproblem has 
been cached; if it is, it returns the cached solution in order 
not to repeat the computation again. If it has not been 
cached, it checks for one of the base case conditions which 
may have been reached such as having no more items or 
the weight capacity being reached. If a base case has been 
reached, it returns the corresponding value. Otherwise, it 
picks the current item and recursively computes smaller 
subproblems. After the values have been computed, it 
updates the cache with the solution in order to be able to 
reuse it the next time it reaches the same subproblem. It 
fills up the table entries systematically so that it shows 
which maximum value is achievable at every weight 
capacity as shown in Block Diagram 3. It structures the 
problem into overlapping subproblems and solves them 
efficiently using caching. The algorithm checks for cached 
results, evaluates base cases, and recursively computes 
solutions while updating the cache for future use, as shown 
in Block Diagram 3.  
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Block Diagram 3: Dynamic Programming Approach 

V. IMPLMENTATION 

Implementation of chosen algorithms for effectiveness and 
efficiency of the algorithms that were reviewed in this 
paper. Essentially, the main aim of this implementation is 
that theory be translated into practical codes to perform an 
in-depth analysis of the efficiency, accuracy, and the 
computational complexity of algorithms when used in real-
world or simulated data. The code uses dynamic 
programming (DP) Memorization a special tabulation 
(bottom-up) method, to solve the 0/1 knapsack problem. It 
uses JAVA programming language to execute the 
algorithm in Visual Studio (VS)coding platform. Woking- 
Dynamic programming solutions are built from a database 
that does not involve any resources or capabilities. For 
each element, you evaluate whether to count it or exclude 
it by comparing the generated values, ensuring that the 
total weight does not exceed the available capacity. 
Overlapping subproblems (as in recursive solutions). Let’s 
say you have the following items for the demonstration of 
the Knapsack: 

Item Price = (60, 100, 120), Weight = [10, 20, 30] 

Capacity:50. Choices are considered to fill DP table, what 
is included and excluded. Items have different abilities. 
The result is stored in DP [3][50] and represents the 
maximum value that can be obtained without exceeding 50 
units. So, the outcomes of the given examples can be brief 
out as the following:  

Time Complexity: O(n×cap) where n is the number of 
items and cap is the capacity of the knapsack. Space 
Complexity: O(n×cap) due to the 2D DP table. The brute 
force approach to the 0-1 Knapsack problem involves 
trying all possible combinations of items to find the 

maximum total value that can be stored in the knapsack 
without exceeding the capacity. 

The steps are as follows: 
1. Start. 

2. Initialize a variable max_value to keep track of the 
maximum value that can be obtained. 

3. Initialize a variable current_value to keep track of the 
current value being considered. 

4. Initialize a variable current_weight to keep track of the 
current weight being considered. 

5. Iterate through all possible combinations of items, 
starting from the first item to the last item. 

6. For each combination, calculate the total value and 
total weight. 

7. If the total weight is less than or equal to the capacity, 
update the current_value variable with the total value. 

8. Compare the current_value with the max_value and 
update the max_value if the current_value is greater. 

9. Repeat steps 6-8 for all possible combinations of items. 

10. The final value of max_value is the maximum value 
that can be obtained by filling the knapsack. 

11. End. 

VI. RESULTS And Discussions 

In the present section we provide results of applying 
various algorithmic methods to solve the 0/1 knapsack 
problem, paying special attention to their performance in 
terms of solution accuracy and computational efficiency. 
The analysis algorithms include classical methods such as 
dynamic programming, greedy algorithms, branch and 
bound. To estimate their effectiveness, we tested these 
methods on many files. The results provide a very good 
comparison of these methods, giving insight into which 
algorithms are best for different dimensions and 
constraints. A. Program Results Below images show 
general output of JAVA code. It represents the best 
possible outcome that performs the 0/1 Knapsack Problem 
which has got three parameters discussed. So, by 
maximizing the result using minimum or limited product is 
indeed proven from the result. 

 

                       Fig 4- Input of the DP Code  
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Fig 5- Output of the DP Code 

 

Fig. 6.  0/1 Knapsack Final Analysis 

This paper explores three approaches for the 0/1 Knapsack 
Problem. The Brute Force Approach checks all 
combinations of items, which gives it a time complexity of 
O(2n) and a space complexity of O(n) as shown in fig 6, 
hence unsuitable for larger issues. The Backtracking 
Approach also explores all combinations but avoids some 
of them, bringing the same time complexity of O(2n) and 
space complexity of O(n). It might sometimes be faster, 
but for large inputs, it is not very efficient. In Dynamic 
Programming, the problem is decomposed into 
subproblems, and solutions are stored; this results in a time 
complexity of O(n⋅W) as per fig 6 and a much better space 
efficiency. For large problem instances, therefore, 
Dynamic Programming is the preferred choice. The DP 
solution has a graphical user interface for usability and 
visualization. Fig. 4 Displays the input screen for item 
value, size, and knapsack capacity. The 'Start' button runs 
the algorithm. The algorithm works out which combination 
of items produces the best combination to fit within the 
knapsack capacity. Results are displayed in an interactive 
pop-up window as in Figure 5: Achieved optimal value. 
Items chosen which bring forth the best solution.         

VII. CONCLUSION 

Based on the graphs following are the conclusion:  

1. Brute Force: Slow but 100% optimal solution.  

2. Greedy: Fast but suboptimal.  

3. Dynamic Programming: Balances time and accuracy, 
offering optimal solutions efficiently. 

This compares four algorithms for the 0/1 knapsack 
problem with an emphasis on store the data efficiency. 

Brute force guarantees a good solution but is impractical 
for large cases. Greedy algorithms provide fast estimates of 
exposure value, while dynamic programming offers good 
real-world compromises between time and accuracy. The 
branch bounding works efficiently with large files by 
pruning branches, though sometimes time constraints may 
occur. Understanding these trade-offs helps organizations 
choose the right algorithm depending on what they need, 
whether speed or visibility into the storage. This analysis 
expresses clearly the differences between algorithms 
related to the 0-1 knapsack problem. One needs to select 
the appropriate algorithm based on constraints of the 
problem and outcomes. In 0-1 knapsack problems, 
dynamic programming is the best option, where power and 
greed have their limitations. 

VIII. FUTURE SCOPE 

Scalability for Big Data Improve Algorithms To solve 
large datasets non-rental but also at reasonable quality. 
Hybrid Methods Design hybrid algorithms to find 
reasonable approximation and exact approach results over 
large problem space domains. Machine Learning and 
Metaheuristics in Corporate Integrate machine learning 
optimization in and explore a selection of the ant colony 
family among other heuristics-algorithm approaches to 
modify or dynamically allocate resources to it. Goal 
Optimization: Algorithms design for multi-objective 
optimization problems in competition to seek solutions for 
the goals and applications. Quantum Computing: 
Exploring Quantum Algorithms Reduced Computational 
Time Improving Problem Solution Process. 
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